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Relationships Between Several Fourth-Order Velocity 
Statistics and the Pressure Structure Function for 

Isotropic, Incompressible Turbulence 

Reginald J. Hill 

ABSTRACT. Assumptions of isotropy, incompressibility, and joint Gaussian probability distribution for 
velocities at two points have previously been used to relate the pressure structure function to fourth-order 
velocity correlations. This relationship predicts that the pressure structure function varies as r 4

fJ in the inertial 
range, and hence the pressure spectrum varies as k-713

• We show that the assumption of joint Gaussian 
velocities is implausible in this inertial-range application. We obtain a new theory relating the pressure 
structure function and spectrum to fourth-order velocity structure functions. We do not use the joint Gaussian . 
assumption or any alternative approximation. The only assumptions are isotropy, incompressibility, and use 
of the Navier-Stokes equation. Specific formulas are given for pressure variance, mean-squared pressure 
gradient, and the viscous range of the pressure structure function. For the case of large Reynolds numbers, 
formulas are given for the inertial range of the pressure structure function and spectrum; these are valid on 
the less restrictive assumption of local isotropy, as are the formulas for mean-squared pressure gradient and 
the viscous range of the pressure structure function. Using the experimentally verified extension to fourth­
order velocity structure functions of Kolmogorov's theory, for the inertial range of the pressure structure 
function and spectrum, we obtain r 4

f3 and k ·?f3 laws. The modifications of these power laws to account for 
the effects of turbulence intermittency are also given. As a result of intermittency, a slightly smaller exponent 
than 4/3 is obtained for the inertial range, whereas the joint Gaussian assumption leads to a slightly larger 
exponent. The inertial-range behavior of the fourth-order velocity correlation tensor and its corresponding 
structure function is investigated using the approximation that velocity components are statistically 
independent of the differences of velocity components. the latter being obtained at spatial separations that lie 
within the inertial range. This assumption is more plausible for the inertial range and less restrictive than the 
joint Gaussian assumption. This investigation reveals that in the inertial range some types of fourth-order 
structure functions of velocity are proportional both to r 2~ and to velocity covariance. Another type of 
fourth-order structure function of velocity is proportional to r 4

f3 and is not proportional to velocity covariance. 

1. INTRODUCTION 

Batchelor (1951), Obukhov (1949), and Obukhov and Yaglom (1951) used the 
assumption that velocities at two points are joint Gaussian random variables to derive 
formulas for the pressure structure function. We show that velocity differences are relevant 
to deducing the pressure structure function. The important aspect of the assumption of joint 
Gaussian two-point velocities is that the difference of velocities at two points is Gaussian. 
This can be an adequate assumption if the two points are separated by a distance lying within 
the variance-containing range. However, for separations in the inertial and viscous ranges this 
assumption is poor, as shown by Anselmet et al. (1984) and VanAtta and Park (1972). 
Consequently, the use of the joint Gaussian assumption and the resulting deductions are 
poorly founded. On the basis of the joint Gaussian assumption, Batchelor (195.1) and 
Obukhov ( 1949) showed that the pressure structure function varies as r 413 within the inertial 
range; hence, the pressure spectrum varies as k· 713

• Obukhov and Yaglom (1951) also 
established this power law on the basis of dimensional analysis. What are in doubt are the 
proportionality constant of the inertial-range power law; the mean-squared pressure gradient, 
which multiplies r 2 in the viscous-range formula; the transition between these ranges; the 
effects of turbulence intermittency; and the general formula relating the pressure structure 
function to velocity statistics. 



Further discussion of the applicability of the Gaussian distribution is given by 
VanAtta and Wyngaard (1975). In this regard, VanAtta and Wyngaard (1975) and 
Batchelor (1951) noted that the joint Gaussian assumption cannot be precisely correct because 
it predicts zero odd-order moments. We, too, examine the implications of joint Gaussian 
velocity statistics, but with reservations as to its applicability. An alternative approximation 
for inertial and viscous ranges at high Reynolds number is the statistical independence of 
velocity from velocity differences. We use this alternative to derive the inertial-range 
dependence of fourth-order velocity statistics and compare these with the corresponding result 
from the joint Gaussian assumption. However, this statistical independence approximation is 
not used to derive the pressure structure function. 

Use of the joint Gaussian assumption and incompressibility causes cancellation of the 
dominant terms contributing to fourth-order velocity correlations. We make this clear by 
expressing the result of the joint Gaussian assumption in terms of second-order velocity 
structure functions, rather than in terms of second-order correlations. The inertial range of the 
pressure structure function is then determined by relatively very small differences that 
contribute to fourth-order velocity correlations. 

Without applying the joint Gaussian assumption, the fourth-order velocity correlations 
are not useful for predicting the inertial range of the pressure structure function. To see this, 
consider that even accurate measurements of fourth-order velocity correlations could not be 
used to accurately obtain the pressure structure function for the inertial range. An attempt by 
Uberoi (1953) failed to obtain the pressure structure function from measured fourth-order 
velocity correlations. We seek another fourth-order velocity statistic that is related to pressure 
fluctuations but that does not contain large terms that cancel when the incompressibility 
condition is imposed. The structure function consisting of the product of four differences of 
velocity components is the desired statistic. This statistic has the advantages that it has the 
simplest possible isotropic form and that one of its components has been extensively studied 
theoretically and experimentally. This allows us to derive a simple general formula relating 
the pressure structure function to integrals of components of this fourth-order velocity 
structure function, and to derive simple analytic formulas for asymptotic ranges. These are 
derived without replacing the joint Gaussian assumption with an alternative approximation. 
From these formulas, we obtain pressure variance, mean-squared pressure gradient, inertial 
and viscous range formulas, and the acceleration tensor. Much analytical manipulation is 
needed to obtain these results; it is summarized in Appendices A-K. 

2. RELATIONSHIPS, DEFINITIONS, AND CONVENTIONS 

The divergence of the Navier-Stokes equation giv.es the following relationship of the 
Laplacian of pressure to the velocity derivatives for incompressible fluid (Batchelor, 1951): 
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~ n2 P = (u u) p v - ; j IU, 

where P is pressure, p is fluid density, u; and uj are velocity components, and V 2 is the 
Laplacian operator. We use the notation 

(u. u.) 
I } Jij 

(1) 

(2) 

Summation is implied over repeated Roman indices; no summation is implied for repeated 
Greek indices. Using (1), Batchelor (1951) and Obukhov and Yaglom (1951) derived the 
pressure structure function and correlation for isotropic turbulence in incompressible fluid; for 
the structure function, their result is 

= 
' 1 J (y 4

- 3ry 3 + 3r 2y 2 ) Q(y) dy 
3r 

0 

r2 J­
+- y 

3 ' 
Q(y) dy. 

Spatial positions are denoted by X and X'; then, r = X- X', r = I rl. Angle brackets 
denote averaging, and we use the convention 

P = P(x) and P' = P(x'). 

In (3), Q is defined by 

In (6), the differentiation is with respect to the components of r. 

The fourth-order velocity correlation is defined by 

3 

(3) 

(4) 

(5) 

(6) 

(7) 



Thus Q(r) can be obtained by differentiation of RUkt( 1) and summation over indices. 
Q(r) can also be obtained from other fourth-order statistics; we consider the following 
fourth-order structure functions: 

and 

The relationships between these quantities are 

(8) 

(9) 

11,Jkt ( 1) = 2 [ R,Jkt (0) - R,Jkt ( 1)] (10) 

D,Jkt ( 1) = 2 [ R,Jkt ( 1) + R,kJt ( 1) + RiiJk ( 1) - 3R,Jkt (0)] + Miikl (i") (1l) 

(12) 

where 

For a correlation having one velocity component evaluated at a point different from the other 
components, the incompressibility condition gives, for instance, 

(14) 

Therefore, by differentiating (13a), 

(15) 
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Thus (6), (7), (10), (11), and (15) give 

Rijkt ( 1) 1 Ukt = Q(r)' (16) 

,t:,.ijkl(f)lijkl = - 2 Q(r), (17) 

D,jkt ( 1) 1 ijkt = 6 Q(r), (18) 

which shows three ways to generate Q(r). For spacings in the inertial range, the relationship 
(10) expresses L'1u,/ 1) as the difference of quantities that are much bigger than "'uuC 1); 
likewise, (11) and (12) express D

1
j,/ 1) as the difference of quantities much larger than itself. 

Yet, (16) to (18) show derivatives of similar magnitude. 

We need to define the second-order velocity covariance 

(19) 

and for brevity and clarity, the covariance 

(20) 

The corresponding structure function is 

(21) 

We have need of a special coordinate system; we will call this the chosen coordinate 
system. The chosen coordinate system is Cartesian with its 1-axis aligned along the 
separation vector r. When we refer to specific components of the tensors, such as L'1

1111
, 

D 1111 , D 11 , D 22 , D33 , we imply that these components are taken along axes of the chosen 
coordinate system. Thus, we will not repeat mention of the chosen coordinate system when 
we present results or refer to a tensor's components. These components depend only on the 
spacing r, not on all components of r separately. Greek indices are used to denote a general 
index for a component resolved in the chosen coordinate system [e.g., ,l:,.aa~~(r)]. No 
summation is implied by repeated Greek indices. For isotropic turbulence, tensors have 
specific formulas in terms of scalar functions. These formulas are given in Appendix A for 
the tensors under consideration as well as for their derivatives. 
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In addition to our general results, we also consider the particular case of very large 
Reynolds numbers, such that the outer scale and microscale are sufficiently separated that an 
inertial range exists wherein (Kolmogorov, 1941) 

(22) 

where E is the energy dissipation rate and C is the Kolmogorov constant; Yaglom (1981) 
reviewed data and recommended C ~ 2. This relationship of D 11 ( r) to D

22 
( r) and D

33 
( r) 

and the fact that Da~(r) = 0 for a,:~ is obtained from (A24) and (A25). We define an 
outer scale L 0 such that the inertial-range formula for D

11 
( r) equals D

11 
( oo); that is, 

C ~2t3•213 = 2cr 
c. Lo II · 

(23) 

For isotropic turbulence, CJ 11 = cr22 = cr33 • Then, (22) and (23) give 

(24) 

Mention of the words "asymptotic," "asymptotically," etc., refer to spacing r within the 
inertial range, taken sufficiently small that rl L0 approaches zero; this requires asymptotically 
large Reynolds numbers. Thus, the asymptotic case always refers to the inertial range. 

We investigate the small-scale range of l!.uk/ 1) using the approximation that, in the 
asymptotic case, the averages of velocity components are statistically independent (Sf) of 
differences of velocity components. Many nonlinear cascades result in intense local velocity 
differences, whereas the velocity varies mostly on the scale of the variance-containing range. 
Of course, this Sf approximation is not exact, and we apply it only to velocity moments 
having an even number of velocity components evaluated at the same position. We also 
consider a variant of the Sf approximation in which the velocity is assumed to be statistically 
independent of the velocity difference. The variant Sf approximation seems to be inferior to 
the former Sf approximation. For instance, the variant Sf approximation wrongly predicts that 
M;Jkt is zero, because of (13b) and <u;- u;> = 0. Thus, this variant Sf approximation is of 
no use for predicting MUkl or for balancing (12). We use both Sf approximations in a very 
restricted manner. We emphasize that this Sf approximation is not used to derive our 
formulas for the pressure structure function. The superscript Sf indicates that a formula 
derives from this statistical independence approximation. This Sf approximation was used by 
Lumley (1965) and Wyngaard and Clifford (1977) to obtain corrections to Taylor's 
frozen-flow hypothesis. 
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We will show formulas that follow from the assumption that the velocities at different 
points have a joint Gaussian probability distribution. This assumption relates 
fourth-order correlations and structure functions to those of second order. For brevity, we 
will call this the JG assumption. For clarity, the tensors will be labeled with the superscript 
JG [e.g., D~~~ ( 1), !!..~~~ ( 1)] when a formula derives from the JG assumption. 

3. THE r-DEPENDENCE OF FOURTH-ORDER VELOCITY 
STRUCTURE FUNCTIONS 

We first briefly discuss the r-dependence of the fourth-order structure functions at very 
large (production range) and very small (dissipation range) separations; then we discuss the 
inertial-range r-dependence in detail. For large separations, the following are readily 
obtained: 

R;jkl (oo) = <Jij(jkl (25a) 

!!..;jk/ (oo) = 2 [ Ruk/0) - O'Ucr"] (25b) 

MU" (oo) = 8 R1jkl(O) (25c) 

DUkl (oo) = 2 [ R1jkl(O) + a1jak1 + a1kaj1 + au aj.]. (25d) 

For the moment, let no two of the indices a, y, or A be equal; from isotropy, we have 
the following relationships between nonvanishing components: 

RaaaJO) = R),).)J, (0) . 

Note that, unlike RU"( 1), R1jk/0) is symmetric under interchange of any pair of indices. 
From (25d) and (26a,b), we have 

D (oo) = D (oo) aan ').J,:yy 

(26a) 

(26b) 

(26c) 

(26d) 

With DUk1(=) replaced by MUk1(=) or !!.. 1jk/=), (26c,d) remain valid [caution: !!.. 1jkl(oo) is 
not completely symmetric]. From Table AI or (A20) and (A21), we have, taking r ~ oo, 
for A and y taken to be 2 or 3 and y *A, 
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(27a) 

Using (27a) in (25d) gives 

(27b) 

Combining (27a) with (26c) as well as (27b) with (26a), with a = I, shows that (27a,b) 
remain valid if y = I ; then (26b,d) show that A can be I if y * I . Thus, (27 a,b) are valid 
if A and y are I, 2, or 3, but A* y. Combining (27a) and (26c) with a = I gives (for y * I 
and A any of I, 2, or 3, but now we can let y =A or y *A, as we choose, provided 
y *I), 

(28) 

The results (28), or equivalently (26c), are surprisingly important because they are essential 
for finite pressure variance and the convergence of certain integrals. One can easily show 
that (26c,d), (27a), and (28) remain valid if D;Jkt is replaced by MUkl' 

For r within the viscous range and tending toward zero, Taylor series expansion of the 
velocity readily shows that components of !1Ukt(1) and MU"(1) are proportional to r 2 and 
that components of DUk/(1) are proportional to r 4

• The coefficients of proportionality are, of 
course, the appropriate velocity-derivative moments and mixed moments of velocity and 
velocity derivatives. 

The remaining asymptotic range to be studied is the inertial range. Van Atta and 
Wyngaard (1975) considered "higher order" velocity correlation functions and their spectra. 
They limited their study to one velocity component; this corresponds to setting 
i = j = k = l = I. The structure function /1 1111 thus corresponds to the "second-order" 
correlation functions and spectra considered by Van Atta and Wyngaard (1975). They 
presented data showing that higher-order spectra of the longitudinal velocity component vary 
as k'513 in the inertial range. This corresponds to /1 1111 being proportional to r 213

• 

Using dimensional analysis, VanAtta and Wyngaard (1975) found that higher-order 
velocity spectra vary as k- 513 in the inertial range, implying /1 1111 oc r 213

• This dimensional 
analysis is not deterministic because the number of parameters is one more than the number 
of applicable dimensions. Thus, as they noted, their result suggests but does not prove the 
k- 513 law for higher-order spectra. They showed that viscous dissipation is an important term 
in the budget of higher-order velocity moments; this dissipation rate plays a central role in 
their dimensional analysis. It is clear that the budget of the more general moment, Ra~y< (0), 
also has an important viscous-dissipation term. Hence, if we repeat their dimensional 
analysis, we obtain 
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where E2(a,p,y,A.) is the dissipation rate for the moment < u. u~ u1u,> . 

VanAtta and Wyngaard (1975) also used the JG assumption to deduce that all 
higher -order spectra vary as k -513

• For their spectrum of u ~, their result corresponds to 

(29) 

(30) 

in agreement with a k- 513 spectrum. The dissipation rate in (29) is not necessarily 
proportional to the velocity variance in (30). Consequently, in (29) and (30), VanAtta and 
Wyngaard (1975) proposed two mutually exclusive theories. Given that the JG approximation 
is dubious when applied to the inertial range, it may seem that (29) is the more plausible 
theory. We think not. By rearranging terms in the definition (8) of tl1ikl and applying the 
Sf approximation, we find that most non vanishing components of tl ijkl are proportional to 
velocity variances. For the asymptotic (inertial range) case, the Sf approximation is more 
plausible and less restrictive than the JG assumption, yet Sf supports the JG predictions. 

We now apply the Sf approximation to tlukr Table AI shows that the nonvanishing 
components of tl Ukl in the chosen coordinate system are either of the type having i = k and 
j = l, or i = j and k = 1 ; the case i = j = k = l is a special case of these two types. The 
first type of nonvanishing component is 

tl·~·~(r) = ([u.u~- u~u~J 2 ) 

= ( [ ~ (u~ + u~) (u.- u~) + ~ (u. + u~) h- u~)r) (3la) 

= (u~ (u.- u~) 2) + (u~ (u~- u~) 2) 

+ 2 (u~u.(u.- u~) h- u~)) - ((u.- u~)2 h- u~)2). (3lb) 

Applying the Sf approximation to (31 b) gives 

S/ 
tl·~·~(r) = cr~~D •• (r) + cr •• D~~(r) + 2cr.~D.~(r) 

(32) 

- v •• ~~(r). 
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The second type of non vanishing component is 

L\a~~(r) = ( ( u~- u~2) (u~- u~2)) 

= (tun- u~) ( ua + u~) (u~- u~) h + u~)) 

= 4 (uau~ tun- u~) (u~- u~)) 

Applying our Sl approximation to (33b) gives 

For a= ~, both (32) and (34) give 

Also, (32) and (34) give 

These formulas can be summarized as 

(33a) 

(33b) 

(34) 

(35) 

(36a) 

(36b) 

If we use (22), (35) and (36a,b) give r 213 as the dominant asymptotic variation. If we use 
(24) and results for Daa~~(r) and Daaaa(r) in the following, Ll.a~a~(r) and Ll.aaaa(r) are 
asymptotically very much larger than D aa~~ ( r) and D aaaa ( r). The results (35) and (36a,b) 
are obtained by assuming that ua is statistically independent of velocity differences; the 
identical results are derived if u~ is assumed to be statistically independent of velocity 
differences. An equally plausible approximation is that the average (ua + u~)/2 is 
statistically independent of velocity differences. Applying this to (31a) and (33a), we 
obtain that in (35), Daaaa(r) is replaced by [Daa(r)] 2

; in (36a), Daa~~(r) is replaced by 
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D (r) D •• (r)/2; and in (36b), D •• (r) is replaced by zero. Note that none of = w =w m 
these replacements are the JG results for Daapp in (B15) and (B16). Thus, (37a) can equally 
plausibly be replaced by 

(37b) 

Therefore, we cannot justify retaining the last term in (35), (36a), and (37a,b) because these 
last terms may be smaller or on the order of the error of our approximation; (36b) may be on 
the order of the error of our approximation. 

Now consider the implications of the joint Gaussian (JG) assumption. The 
manipulations are given in Appendix B; the results are 

We note that (38) is the same as (37b). 

(38) 

In Appendix B, we obtain from (38) the components in our chosen coordinate system 
that are listed as nonvanishing in Table A1: 

li~~aa(r) = 4 (JaaDaa(r) - [Daa(r)y 

li~~ap (r) = (JaaDpp(r) + (JppDaa(r) 

1 - _ D (r) D •• (r) 
2 aa "" 

for a*~ 

for a*~. 

For either approximation, components of li ijktC 1) are either zero or vary 
asymptotically as r 213 , with the exception of (36b). We caution the reader that the 
SI approximation is asymptotic. If valid, it applies for very small r/L 0, whereas the 

(39) 

(40) 

(41) 

JG approximation, if valid, is most accurate for r larger than or on the order of L 0• Given 
this caution, note that (37b) is identical to (38) and therefore (37b) gives (39) to (41), whereas 
(37a) differs from both (37b) and (38) in the asymptotically small terms. That equally 
plausible applications of SI produce different asymptotically small terms suggests that the 
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Sf approximation is incapable of correctly obtaining these small terms, and this calls into 
question the plausibility of the correctness of these terms in the JG result (38). On the other 
hand, if one can show that (37b) is the proper Sf result to the exclusion of (37a), then the 
asymptotically small terms in (38) become plausibly correct. These distinctions are important 
because these asymptotically small terms produce the pressure structure function. 

We have investigated the predictions of both the Sf and JG approximations. We 
conclude that most components of /!,.ijkl are proportional to velocity covariances and behave as 
r 213 in the inertial range. We believe that this is simply a consequence of being able to 
rewrite /!,.apap and /!,.aapp in the forms (3la,b) and (33a,b) that make it evident that 
asymptotically there is a factoring into variance and second-order structure function. 

We now turn to the inertial range of D1ikl" The nonzero components of D1ikl for 
isotropic turbulence are given in Table AI. Considering the symmetry of D

1
ikl under 

exchai1ge of indices, these nonzero components are all of the type having i = j and k = l, the 
case i = j = k = l being a special case of this same type. Therefore, we consider the 
component 

which we must understand for later application to the pressure structure function. 
Asymptotically, an appropriate scale for (u

0
- u~) 2 is D

00
(r). Thus, simple scaling 

considerations lead us to the estimate, for a* ~, 

and for a=~. 

D (r) ~ b [D (r)] 2
"" r 413 

acxacx o:a ' 

(42) 

(43) 

(44) 

where a and bare unknown coefficients. Asymptotically, the estimates (43) and (44) must 
apply equally well over an arbitrarily large range of r. Hence, these estimates prescribe the 
dominant variation to be r 413 

• 

The JG assumption leads to similar results. From Appendix B, we have 

(45) 
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The nonvanishing components in our chosen coordinate system are 

(46) 

for a*-~. (47) 

Note the similarity of (43) and (47) and of (44) and (46). For an inertial range, we 
can obtain similar results from dimensional analysis using E and r as relevant parameters, but 
this brings us to the following discussion of intermittency theory. 

The velocity structure functions given by <(u
1

- u; )"> have been studied extensively 
in connection with the effects of intermittency. The relevance to the pressure structure 
function arises from 

The experimental studies of (48) were by Anselmet eta!. (1984), Antonia eta!. (1982a), 
Vasilenko eta!. (1975), VanAtta and Park (1972), and VanAtta and Chen (1970). They 
demonstrated that ( u

1 
- u;) is not a Gaussian random variable for spacings in the inertial 

range, that the flatness factor <(u1 - u;) 4 > I <(u
1

- u; )2>2 is not 3 as implied by (46) 

(48) 

(it is larger and varies with the Reynolds number), that the variation of D
1111 

( r) is slightly 
less steep than r 413

, and that the flatness factor varies somewhat with r. 

The various theories of the intermittency effect are negligibly different when applied 
to D 1111 ( r) . These theories were reviewed by Anselmet et a!. (1984). Here we state the 
prediction of the earliest theory as given by Kolmogorov (1962): 

D (r) = e E413 r4t3-z11 J9, 
1111 "II 

(49) 

where e11 depends on the flow macrostructure. Indeed, e11 has dimensions of a length 
raised to the power of 2J.J/9. Experiments give J.l = 0.25. ± 0.05 (Sreenivasan and 
Kailasnath, 1993), so 2J.!I9 = 0.06, which gives a very sma:Jl departure from the 4/3 power 
law. The intermittency theories and experiments show that the simple scaling consideration 
that gave (43) and (44) cannot be extended to high-order moments. 

We can now state the asymptotic inertial-range formula for MUkl" We use the fact that 
M1jkt must exactly cancel the r 213 asymptotic behavior of the /',.Ukt in (12) such that D1jkt 

behaves as r 413 asymptotically. Note that M
1
jkt has the same symmetry under interchange of 

its indices as does D1jkt; thus, for instance, Ma~a~ = MaaW From (12), th~ asymptotically 
dominant, nonvanishing components in our chosen coordinate system are 
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Sf ) JG 2 M •••• (r = M •••• (r) ~ 1 cr .. D •• (r) 

The expressions (51) and (53) follow respectively from (50) and (52) using either JG or 

(50) 

(51) 

(52) 

(53) 

SI approximations in (35) to (36a,b) or (39) to (41); (51) and (53) demonstrate that 
components of M,i,

1 
are asymptotically proportional to velocity covariance and to e -ID r 'D. 

4. ASYMPTOTIC FORMULAS FOR THE PRESSURE STRUCTURE FUNCTION 

We discuss the asymptotic formulas for DP(r) for the inertial, dissipation, and 
production ranges. At sufficiently large separations in the production range, Dp(r) ~ DP(oo), 
which is twice the pressure variance. The pressure variance is discussed in Appendix H. · 
To obtain DP(r) in the dissipation range, we first use the formula by Batchelor (1951): 

X= -
1 (IV PI') = jy Q(y) dy. 
p' 0 

(54) 

We see that X is the mean-squared pressure gradient, which is discussed in Appendix G. 
Using (54), we replace the last integral in (3) with an integral from 0 to r. Then, by Taylor 
series expansion of Q(y), (3) gives as r -7 0, 

Dp(r) = ~ xr'- _I_ Q(O) r 4 + .... , 
3 60 

(55) 

where 

Q(0)/60 = dJJ hQ' 

and the derivative moments d
1
1' dn, and d 1Y are defined in Appendix F. We see that hQ is 

a universal constant. Thus, DP(r) is quadratic at the origin, as is required by Taylor series 
expansion of the pressure. Of course, the JG approximation produces the same result with 
the additional, unlikely simplification that 
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(56) 

We now investigate the inertial range of DP(r). Obukhov (1949) and Batchelor 
(1951) performed the derivative in (16) on the formula (B1) relating R 1jkl( 1) to the second­
order velocity correlations. This is equivalent to using (17) and (38), since R,jk/ 1) differs 
from D.Ukl( 1) by an additive constant and a factor of - 2. Superficially, fourfold 
differentiation of a function that varies as r 213

• as does (B I) and (38), will produce 
Q(r) oc r 213 - 4 , which, when substituted in (3), gives Dp(r) oc r 213

• However, the 
incompressibility condition is (Batchelor, 1960) 

and 

Hence, performing the differentiation in (16) or ( 17) causes the asymptotically dominant 

(57) 

(58) 

terms to vanish; this is most obvious from (38), (57), and (58). Only the asymptotically small 
terms in (38) produce Q(r) oc r 413

-
4 and, hence, DP(r) oc r 413

• We would be very fortunate 
if the JG assumption is so accurate that the asymptotically small terms in (38) were correct. 
If we instead generate Q ( r) using (18) and ( 45), then we obtain Q ( r) oc r 413

-
4

• Only terms 
proportional to r 413 exist in (45). Indeed, we obtain the same Q(r) from (18) and (45) as we 
obtain from (17) and (38), without the vanishing of asymptotically dominant terms. 

The Sf approximation is important in validating the inertial-range formulas (35) and 
(36a); it is, however, demonstrably incapable of predicting the inertial range of Dp(r). To 
see this, note that (37) gives (l~k1 ( 1)Jiikl ~ - D 11"( 1)

1
,jkl' which, by (17) and (18), is wrong 

by a factor of 3. Thus, the asymptotically small terms in (35), (36a), and perhaps (36b), are 
indeed in error as we suspected earlier. 

Generating Q (r) using (18) is therefore far more convincing than using ( 16) or (17), 
but we have noted that the JG assumption is perilously in disagreement with the experiment, 
so we do not want to use the JG assumption. We have the empirical result that D 1111 (r) is 
very nearly proportional to r 413 

, but we do not have an empirical basis for the other 
components of D,jk/ 1) that are required in (18). The estimates (43) and (44) suggest that 
the other components are also proportional to r 413

• Equation (A20) shows that D 1111 (r) is a 
linear combination of all three scalar functions that enter into the isotropic-tensor formula for 
D,jk/1). Thus, if one of the other nonvanishing components [e.g., Daa~~(r), for Cl;i'~] 
were to decrease more slowly than r 413

, e.g., as r 213, then at some values of r, however 
small, D 1111 ( r) would also have this same asymptotic variation. This is obvious from (A21) 
because at least one of the scalar functions must have such slower variation. Moreover, a 
transition within the inertial range to a decrease more slowly than (49) (essentially r 413

) would 
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contradict the dimensional analysis leading to ( 49), and would also contradict the dimensional 
analysis by Obukhov and Yaglom (1951) that gives Dp(r) = r 413

• Since this transition to a 
more gentle decrease has not been observed by measurements of D1111 (r), we conclude either 
that the other components decrease at least as rapidly as r 413 or that the experiments have not 
yet attained sufficiently large Reynolds numbers for the slower variation to be observed. To 
determine which of these two possibilities is true, it would be best to measure all the 
structure-function components. 

We assume that all the components of D,jkl( f) decrease at least as rapidly as r 413
• 

Then, from (A22) and (18), the asymptotic dependence of Q(r) is proportional to r 413
-

4
• 

Hence, DP(r) = r 413, and the pressure spectrum varies as k-713 • From (A22), the 
proportionality factor depends on the levels of three structure-function components, two 
of which have not been measured. From our previous comments, it would be fortuitous if 
the proportionality factor were the same as predicted on the basis of the JG assumption by 
Obukhov (1949) and Batchelor (1951). 

We make the stronger assumption that all the nonvanishing components of D,jkl 
have the same power law in the inertial range. In Appendix C, we show that this leads to 

(59a) 

(59b) 

where HP is a universal constant defined in (Cl3) and is to be determined by experiment, and 
(59b) follows from (59a) by use of (49). If we neglect intermittency effects (take 1.1 = 0), 
then e11 is a universal constant rather than having macrostructure dependence, and we define 
a new universal constant eP "' HP e11 ; we obtain the simpler results 

(60) 

(61) 

In (60), lc andy are 2 or 3 (one can take lc = y), and 3 D
2233

(r) can be substituted for 
Dw.A(r). Since Dp(r) > 0, (60) gives a bound on the relative values of the structure­
function components. This bound does not derive from kinematics alone; it results from use 
of the Navier-Stokes equation. A less stringent bound from X > 0 is given in Appendix G. 
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5. GENERAL FORMULA FOR THE PRESSURE STRUCTURE FUNCTION 

Our general formulation for the pressure structure function consists of substituting 
(A22) in (18) and the result into (3). Integration by parts reduces the general formulation to a 
useful and simple result. The details are given in Appendix D. We obtain from (Dl7) 

~ 

DP(r) ; - ~ D 1111 (r) + ~ r 2 J y-3 [D1111(y) + DAill(y)- 6D11yy(Y)j dy 

' (62) 
' 

+ ~ J y-• [DAm(y)- 3 D 11yy(Y)j dy, 
0 

where, as discussed below (A22), indices y and /... can be taken to be either 2 or 3 and 
3 D 2233 can be substituted for DAm. The inertial-range formulas (59a) and (60) can be 
obtained from (62). 

The relationship between a structure function and its spectrum from data along a line 
can be written as (Tatarskii, 1971) 

~ 

J dr sin(k
1
r) D~1 )(r), 

0 

where D~1 )(r); dDP!dr, and '¥P(k1) is normalized to give the pressure variance as in 
(CIS). Inserting (62) in (63) and integrating by parts gives 

(63) 

8 J~ [ sin(k1 r) cos(k1 r)] ) (64) 
ND(r) + _ dr - AD(r) , 

3 0 (k
1 
r)3 (k

1 
r)2 

where 

and 

and where AD(r) is the same function that appears in (A14) and (A20). Note that an inertial­
range formula is not to be substituted into (63) or (64); convergence of the integrals requires 
(Cl4). 
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A fast Fourier transform (FFT) on a time series of measured pressure, and use of 
Taylor's hypothesis, can give 'I' P ( k

1
). However, the analogous operation for the right side of 

( 64) is to calculate the fourth-order velocity structure functions, calculate N 
0 

( r) and A 
0 

( r), 
and then perform the integrals in (64). There is no FFT that produces the spectra 
corresponding to the integrals on the right side of (64). Detrending and windowing are 
usually performed prior to an FFT. Using (64) to compare a measured pressure spectrum 
with measured velocity structure functions presents the problem of how to analyze the 
velocity data to produce a right side of ( 64) that corresponds to de trended and windowed 
pressure data. 

6. SENSITIVITY TO DEPARTURES FROM ISOTROPY 

George et a!. ( 1984) measured the pressure spectrum in the mixing layer of an 
axisymmetric jet and compared it with theory. They showed that their pressure spectrum 
is caused by three terms that they call (1) 2nd-moment turbulence-shear interaction, 
(2) 3rd-moment turbulence-shear interaction, and (3) turbulence-turbulence interaction. They 
used the JG assumption to deduce their spectrum for the turbulence-turbulence interaction. 
Our D P ( r) is caused by only this third interaction. Judging by comparison of theoretical and 
measured spectra in their Fig. 15, DP(r) in the inertial range is less than twice v;c(r), i.e., 
DP(r) < 2 [D 11 (r) ]

2
• 

Antonia eta!. (1982a) obtained the inertial-range flatness factor D
1111 

(r)/[D
11 

(r)] 2 ~ 
4.5; this was obtained from an axisymmetric jet having nearly the same Reynolds number 
(based on nozzel diameter d and exit velocity) as existed in the experiment by George et a!. 
( 1984 ), but Antonia et a!. ( 1982a) used the downstream position 50 d and George et a!. 
(1984) used 1.5 d and 3.0 d. Therefore, we assume that the flatness factor was at least 
4.5 in the experiment by George eta!. (1984). Using this estimate of the flatness factor 
and the observation from the George eta!. data that DP(r) < 2 [D11 (r)f, we obtain 
DP(r) < (5/3) D 1111 (r) /4 in the inertial range. Therefore, the three terms in (60) cancel 
each other to produce a DP(r) that is at least 4 times smaller than the first term in (60) and 
may be yet much smaller than the term of largest magnitude in (60), whichever term that 
may be. 

Isotropy gives six ways to calculate (60). Two possible choices for A., as well as for y, 
give four ways. Replacing Dw.A ( r) with its isotropic equivalent, 3 D

2233
( r), and the two 

possible choices for y give two more ways. All six ways to calculate (60) from a given 
velocity data set and given r within the inertial range must yield the same D P ( r) to within 
some plausible error; if the data do so, then we say that the data are sufficiently isotropic for 
prediction of the inertial range of D P ( r). 

The JG assumption also produces an inertial-range formula that is sensitive to 
insufficient isotropy. This is not apparent in previous work by Obukhov (1949) and Batchelor 
(1951) because of the order in which relationships were used to simplify the result. We apply 
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the JG assumption while delaying use of (A25), which is derived on the basis of both 
incompressibility and isotropy, as well as delaying use of (22), which follows from (A25) on 
the basis of Kolmogorov's 2/3 power law. Applying the JG assumption to R,jkl( 1), tl,jkl( 1), 
and D,jk/ 1) gives (B2), (B7), and (B8), respectively, which, when substituted in (16) to (18), 
give the same Q10(r) in all three cases; Q10(r) is given in (B23). Substituting this Q10(r) 
in (3) and integrating by parts gives (E8), which, using (E9), is the same as applying the 
JG assumption to (62). Now assume that Daa(r) '"' r 213 for a = 1, 2, 3; substituting this in 
(E8) gives 

(65) 

Using (B15) and (B16), we find that the three terms above are just the JG estimates for the 
corresponding three terms in our (60). To this point, we have used isotropy, 
incompressibility, and the inertial-range power law. To estimate the three terms in (65) and 
to pass to the usual final JG result, we use (A25), which is now the same as using (22); we 
obtain 

D;0 (r) = 5 [Dil (r)] 2 + 16 [Dil (r)] 2
- 20 [D 11 (r)]

2 

= [Dil (r)]2' 

(66) 

(67) 

where the three terms in (66) correspond to those in (65). The terms in (66), and therefore 
the terms in (65), must be much more accurate than 1 in 20 to produce (67). Given velocity 
data, there are four ways to calculate v;0 (r) from (65). These ways correspond to two 
choices for each of lc andy; (67) is a fifth way. All five ways must give nearly the same 
value of v;0 (r); otherwise, the data are insufficiently isotropic to predict v;0

(r). 
Equivalently, the data must satisfy (A25) and (22) within a corresponding accuracy such that 
v;0 (r) is adequately predicted in the inertial range. If data contain only u 1 , so that other 
components of D,j cannot be calculated, then these data cannot plausibly predict D ;o ( r) 
using (67) nor prove (67). 

We have previously noted reservations as to the accuracy of the JG assumption when 
it is applied to inertial-range velocity statistics. To obtain v;0 (r), we must require that the 
JG assumption be sufficiently accurate in its prediction of the three terms in (65) so that these 
terms cancel to accurately produce the much smaller result (67). We consider this level of 
accuracy to be implausible; it has not been demonstrated experimentally or theoretically. 

We note that even if a flow is sufficiently isotropic, or sufficiently locally isotropic at 
some r, velocity data can be insufficiently isotropic because of imperfections in the 
measurement process (Karyakin eta!., 1991) For instance, when the energy-containing range 
is anisotropic, use of Taylor's hypothesis can result in measured local anisotropy even if the 
flow has accurate local isotropy (Hill, 1994). Care must therefore be exercised when using 
Taylor's hypothesis to obtain either fourth-order velocity structure functions for use in (59a,b) 
and (60) or second-order structure functions for use in (65). 
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The formulas for the viscous range of DP(r) and the mean-squared pressure gradient 
are not as sensitive to the accuracy of isotropy as is the inertial-range formula. 

The relationships (59a,b) and (65) are also sensitive to the value of the exponent in the 
inertial-range formulas. To illustrate this fact, let the exponent in the inertial-range formula 
for D

00
(r) be (2/3) + (J.i/9); this exponent must be the same for a= 1, 2, and 3 if (A25) is 

exact. We can let J.l be any value, including the intermittency value. Using this exponent in 
(E8), to obtain a modification of (65), as well as in (A25), to further obtain a modified (22), 
we obtain the result that (67) is to be multiplied by 1 + (J.i/2). The intermittency value, 
J.l ~ 0.25, makes a perhaps unmeasurable change in second-order velocity structure functions 
and corresponding spectra, but it makes a 12% increase in the inertial range of v;c(r). 
A similar sensitivity is likely for (59a,b), but quantitative results must await measurements so 
that Hp can be evaluated. 

7. EFFECTS OF COMPRESSIBILITY 

Incompressibility is a very important assumption in our derivations; it produced great 
simplification relative to the case of compressible fluid flow. To derive the pressure structure 
function and pressure spectrum for the case of compressibility requires that we use the 
hydrodynamics equations for the compressible case. The derivation would be much more 
complicated than that presented in this paper. 

However, we can make some inferences as to the importance of compressibility to the 
form of the pressure structure function. If D .. 

1
• and D .. 1. do not vanish, then it is plausible 

I} '21 lj ] 

that (18) and (32) and (34) produce Q(r) ocr 13 -
4 at sufficiently small r in the inertial range. 

If so, then D P ( r) would asymptotically become r 213
• The asymptotic inertial-range formula 

appears to be very sensitive to the exact cancellation of the derivatives in the summations 
(57) and (58). 

The compressibility effects can be expressed in terms of the non vanishing of the 
quantity M,1k1(f') 1,1k1. Like DiJk/f'). M11k/f') is symmetric under interchange of any pair of 
its indices. Consequently, with the symbol D replaced by M, the results in Tables A1 and C1 
all hold as do (A14) to (A16), and (A20) to (A22). Equation (18) is replaced by 

The derivations of Appendix D and Sec. 5 hold when using MiJk/ f) in place of D 11k/ f). 
Consequently, in addition to (62), the pressure structure function has a new term given by 
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Mp(r) = ~ M 1111(r)- : r 2 f y-3 [M1111(y) + M).).U(y)- 6M11yy(Y)j dy 

' (69) 

Note that we obtain this without using the Sf or JG assumptions. Of course, MP(r) is not the 
only additional term contributing to the pressure structure function; to determine all 
the others, we would have to begin with the equations for compressible fluid flow. 

In Appendix J, we show that (69) requires that the incompressibility condition be more 
accurate for greater Reynolds numbers and also for smaller r/L0 , where r is a spacing in the 
inertial range. 

8. SUMMARY 

In this paper, we derive the relationship between the pressure structure function and 
the fourth-order velocity structure function Dijkl( f); the pressure spectrum and correlation 
therefore are also related to Dijkl( 1). We treat the simplest case of incompressibility and 
isotropic turbulence. The previous formulation related the pressure correlation and spectrum 
to the fourth-order velocity correlation Rijk/ f) ; that R,jk/ f) is not the most appropriate 
statistic to use is clear from several considerations. First, there must be subtraction of very 
large values of R,jkl( f) to produce the relatively small quantities needed to obtain pressure 
correlations, spectra, and structure functions. This implies that measurements of R,jkl (f) 
would have to be extremely precise to produce the pressure quantities. This problem 
becomes increasingly severe as length scale is decreased within the inertial and dissipation 
ranges for very large Reynolds numbers. Second, R,jkl( f) depends on the energy-containing 
range, whereas both Dp(r) and Dijkl( f) should exhibit local isotropy. Thus, by relating 
DP(r) to Dijkl( f), we have a useful relationship for the locally isotropic case, even if the 
energy-containing range is anisotropic and inhomogeneous. 

The JG approximation was previously used to obtain results for the pressure quantities. 
It is now clear [from (16), (Bl), (57), and (58)] that the combination of incompressibility and 
the JG approximation were used to eliminate the very large, extraneous parts of R,jkl( f). 
In Sec. 5, we find that the JG approximation is implausibly accurate for prediction of the 
inertial range of DP(r). We derive DP(r) without use of the JG assumption or any 
replacement approximation. This makes our method the natural beginning point for studies of 
turbulence of compressible fluids and of anisotropic turbulence, such as atmospheric 
turbulence. We validate our derivations by showing that our formulas become their 
previously known JG versions when the JG assumption is applied. · 
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One component of Dijkt( 1) has been the subject of extensive experimental and 
theoretical investigation. As a result, for the inertial range we obtain D P ( r) = r 413

, as 
derived by Obukhov (1949) and Batchelor (1951), or perhaps slightly different from r 413

, 

as indicated in (59a,b). The inertial-range proportionality factor given in (C13) or (61) has 
three terms involving the level of three components of the structure function. This factor is 
sensitive to the cancellation between the three terms. As a result, this factor is sensitive to 
the accuracy of local isotropy in any given data, and this factor is probably sensitive to the 
inertial-range exponent of the structure-function components, and it is probably different from 
the proportionality factor derived by Obukhov and by Batchelor. The three structure function 
components should be measured or obtained from numerical simulation of the Navier-Stokes 
equation; that DP(r) > 0 places bounds on the relative magnitudes of these components in 
the inertial and viscous ranges. 

We present formulas for the mean-squared pressure gradient X and pressure variance 
in Appendices G and H, respectively. Study of inner scales of second- and fourth-order 
velocity structure functions in Appendix F leads to estimates of X and its JG version X1c. 
We find that xlxJG depends on the Reynolds number, so XJG is of limited applicability. 

Incompressibility is important in our derivations. In Sec. 6 and Appendix J, we 
estimate the constraint on compressibility such that the present results for Dp(r) remain 
valid. 

The acceleration correlation is important in studies of particle dispersion, aerosol 
coagulation, and sound radiated by bubbles in turbulence. In Appendix K, we give 
expressions for the acceleration correlation based on (62). 
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Appendix A: Isotropic Tensors 

For isotropic turbulence, the general form of a fourth-order statistical tensor can be 
written as [following from Eq. (3.3.7) by Batchelor (1960)] 

r. r. rk r1 r. r. r. rk 
z,jk1(1) = A (r) ' 1 + B,(r) __:_

2

1 ok1 + C (r) - 1
- 0.1 z r4 r z r2 ' 

~0 0~ ~~ 
+ D,(r) - 2- o,j + E,(r) - 2-' ojk + F,(r) -' 2- o.j1 

r r r (AI) 

+ G,(r) r<, o" + H,(r) o,jok, + I,(r) o,koj, 
r 

The A ( r ), B ( r ), ... , J ( r) are scalar functions of only r = \ r\. This tensor can be 
' ' ' applied to correlations or structure functions. 

We perform the fourth-order differentiation on (AI) to obtain 

AC3l ( ) A< 21(r) 
z,jk,c n Jijk/ = A~41(r) + 8 ' r + I2 ' 

r r2 

+ K;41(r) + 
K;

3
\r) K< 21(r) K; 11(r) (A2) 6 + 2 ' - 4 
r r2 r3 

K (r) 
+ L;41(r) 

L;
3
\r) 

+ 4 ' + 4 
r• r 

where the superscript numeral in parentheses indicates the order of differentiation with respect 
tor, and 

K,(r) = B,(r) + C,(r) + D,(r) + E,(r) + F,(r) + G,(r) (A3) 

L,(r) = H,(r) + I,(r) + l,(r). (A4) 

An important labor-saving identity for obtaining (A2) from (AI) is 

25 



We define the operators 

V - ~+ m' 
m dr r 

where m is a real number. Then V 1
2 is the radial part of the Laplacian operator in spherical 

coordinates. Operators V m and V. commute only if m = n. Now, (A2) can be written more 
succinctly as 

- n4 n2n2 n4 
zijkl(r)liJkl= Vz A,(r)+ v, Vz K,(r) + v, L,(r). 

Applying the commutative property of multiplication to (8) gives 

""ijk/ = ""jikl 

""ijk/ = f'lUik 

""ijk/ = ""kUj. 

When applied to (AI), (AS) to (A7) give 

B~ = D~ 

c~ = E = F~ = G~ ~ 

I~ = ]~. 

Therefore, (A2) applies with 

Our chosen coordinate system is Cartesian with the !-axis along the separation vector 1. 
In this case, r1 = r and r,fr = o", so (AI) and (A8) to (AIO) give 
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(A6) 

(A7) 

(A8) 

(A9) 

(AIO) 

(All) 

(Al2) 



!J.;jk/< n = A" (r) o1; o1j o1k o11 + B" (r) [ou olj ok, + olk ol, ou] 

+ c"(r) [o 1jo1kon + ouo 11 ojk + ouo1koj, + olj oil o;k l (Al3) 

+ H"(r) oUok1 + I" (r) [ O;k ojl + OH oj.]. 

This tensor has only five linearly independent components. Table AI gives the coefficients of 
the functions, A", B "' C", H", I" for all nonvanishing components of !J.Ukl" 

Table Al.--Coefficients of A"(r), B"(r), C"(r), H"(r), and I"(r) in (Al3) and 
of Av(r), BD(r), and HD(r) in (Al4). Coefficients that are all zero are not listed. 

i j k l A" B" c" H" I" AD BD HD 

1 1 1 1 1 2 4 1 2 1 6 3 

1 1 2 2 0 1 0 1 0 0 1 1 

1 1 3 3 0 1 0 1 0 0 1 1 

1 2 1 2 0 0 1 0 1 0 1 1 

1 2 2 1 0 0 1 0 1 0 1 1 

1 3 1 3 0 0 1 0 1 0 1 1 

1 3 3 1 0 0 1 0 1 0 1 1 

2 1 1 2 0 0 1 0 1 0 1 1 

2 1 2 1 0 0 1 0 1 0 1 1 

2 2 1 1 0 1 0 1 0 0 1 1 

2 2 2 2 0 0 0 1 2 0 0 3 

2 2 3 3 0 0 0 1 0 0 0 1 

2 3 2 3 0 0 0 0 1 0 0 1 

2 3 3 2 0 0 0 0 1 0 0 1 

3 1 1 3 0 0 1 0 1 0 1 1 

3 1 3 1 0 0 1 0 1 0 1 1 

3 2 2 3 0 0 0 0 1 0 0 1 

3 2 3 2 0 0 0 0 1 0 0 1 

3 3 1 1 0 1 0 1 0 0 1 1 

3 3 2 2 0 0 0 1 0 0 0 1 

3 3 3 3 0 0 0 1 2 0 0 3 
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Since DiJkl' defined in (9), is symmetric under interchange of all its indices, its 
isotropic form corresponding to (Al) has BD = CD = DD = ED = FD = GD and 
HD = ID = JD. 

The formula analogous to (Al3) is 

+ BD(r) [ol,oljokl + olkollo,j + oljolkoil 

+ oliollojk + ol,olkojl + oljollo,k l 
+ HD(r) [o,1ok1 + o,ko11 + o,1o1k]· 

(Al4) 

The coefficients of AD, BD, and HD are given in Table Al for all of the nonvanishing Dnr 
From (All) and (Al2), we see that (A2) applies to D 11k/ 1) liJkl with 

1 

and 

From (Al3), the nonvanishing components are 

f'. •••• (r) = [ A"(r) + 2 B"(r) + 4 C"(r)] o1• + H"(r) + 2 I"(r) 

f\. 0·~~ (r) = B"(r) (3 1• + 0 1 ~) + H"(r) 

!'.·~·~ (r) = C"(r) (o 1• + 0 1 ~) + I" (r) 

From (Al4), the nonvanishing components are 

for a ct.~ 

for a ct.~. 

for a ct.~. 

(AlS) 

(Al6) 

(Al7) 

(Al8) 

(Al9) 

(A20) 

(A21) 

Equations (A17) to (A21) determine the functions A", B", C", H", I" and AD, BD, HD in 
terms of measurable, linearly independent components of the fourth-order structure functions. 
Substituting (AIS), (A16), (A20), and (A21) into (A2) gives 
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(A22) 

In (A22), y is 2 or 3, and A is 2 or 3; y can be taken to be equal to A, or different from A. 
Define K to be 2 or 3, but K *A; then from (A20) and (A21), we have 3 D'IJ..""(r) = D1J..1J..(r); 

. one could therefore substitute 3 D'IJ..""( r) anywhere D1J..1J.. ( r) appears in (A22). 
Equation (A22) can be written more succinctly as 

The general form of a second-order isotropic tensor is (Batchelor, 1960) 

r. r. 
Z (1) = S (r) -'-1 + T (r) 0 ... 

IJ Z: 2 . Z IJ . r 
(A23) 

Applied to D
1
/ 1) for the chosen coordinate system, we can write 

(A24) 

The only nonvanishing components are D
11

(r), D22 (r), and D33 (r) with D
22

(r) = D
33

(r). 
The condition of incompressibility, (57) and (58), gives the relationship (Obukhov, 1949) 

2 (I) 2 n 
- D 22 (r) = D 11 (r) +- D 11 (r) = v2 D 11 (r). 
r r 

(A25) 

Analogous relationships hold for R
1
/ 1), as given by Batchelor (1960). 
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Appendix B: Moments of the Joint Gaussian Distribution 

Here, we give the relationship of fourth-order correlations (and structure functions) to 
second-order correlations (and structure functions) that are obtained from the joint Gaussian 
assumption. The relationship for R~~~ (i'), defined in (7), is given by Batchelor (1960) as 

(B1) 

Substituting (21) in (Bl) gives 

(B2) 

The moment ( u; uj uk uyc is easily obtained from the moment-generating function of the joint 
Gaussian distnbution, which is in Sec. 8.3 by Batchelor (1960). We obtain 

Substituting into (13) the moments obtained by cyclic permutations of the indices in (B3) 
gives 

M~~~ (f) = 4 [ 2 ( cr,j crkt + cr,k crjt + cru crjk) - cr,j Rkt (f) - crkt R,j (f) 

- crjt R,k (f) - cr,k Rjt (f) - crjk Ru (f) - cru Rjk (f)] 

where (B5) results from substituting (21) in (B4). 

30 

(B3) 

(B4) 

(B5) 



The formula for !l;j~l ( 1) follows trivially from (10) and (B 1) or (B2): 

(B7) 

Now, D~~~ ( 1) is easily obtained from (11) or (12). We substitute (B2) and (B5) in 
(11); all terms like cr

1
jDkl ( 1) that appear in (B2) and (B5) cancel: 

Only the asymptotically smallest terms contribute in (B8). 

From (B7) we obtain the nonvanishing components (see Table Al) in the chosen 
coordinate system: 

Both (B9) and (B 10) give 

Since (B 11) renders (B9) and (B 10) irrelevant unless a: ;t ~, we state that 

JG ( flaa~~ r) = 0 for a: ;t ~ 

fl~~a~ ( r) = craaD~~(r) + cr~~Daa(r) 

1 - 2 Daa(r) D~~(r) for a: ;t ~. 
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Comparing (Bll) to (B13) with (Al7) to (Al9) relates the functions A~G. B~G. c~G. H~G. ItG 
to variances and second-order structure functions. In particular, (B 12) and (Al8) require 

and JG H, (r) = 0. (Bl4) 

Similarly, from (B8) we obtain the nonvanishing components 

(Bl5) 

for a* P. (Bl6) 

Comparing (Bl5) and (Bl6) with (A20) and (A21) relates the functions A~c. B~c. and H~c to 
second-order structure functions. Let A = 2 or 3; then we have 

JG 
A, (r) = - [DII (r)- D'M (r)]2 (Bl7) 

JG 
K, (r) = 4C~G(r) = 2 [2cr'M- D'M(r)J[D 11 (r)- D'M(r)] (Bl8) 

L~G(r) = 2/~G(r) = 4cr'MD'M(r)- [D'M(r)] 2 (Bl9) 

A;,''( r) = 3 [D 11 (r)- D'M(r)] 2 (B20) 

KJG(,) 
D = 6 B~G(r) = 6D'M(r) [D 11 (r) -D'M(r)] (B21) 

L JG(') 
D = 3H~G(r) = 3 [D,,(r)j 2. (B22) 

By incompressibility, the terms in (Bl7) to (Bl9) that are proportional to cr'M must vanish 
when substituted into (A2). We write these terms as 

Using (A25), it is easy to show that 
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Hence, these terms vanish from (A2) as they must. The remaining terms in (B 17) to (B 19) 
are related to (B20) to (B22) by a factor of -3, which is the factor relating (17) and (18). 
Hence, (A2) with (B 17) to (B 19) give the same Q (r) as (A2) with (B20) to (B22), and hence 
generate the same v;G(r) as they must. It is simpler to first recast (A2) in a form analogous 
to (A22); then, using (B17) to (B19) or (B20) to (B22) after eliminating DJJ.(r) in favor of 
D 

11 
( r) by using the incompressibility condition (A25), we obtain 

Q'G(r) = 2 [v\~>(r)r + 2 D\?<rl D\~>(r) 

10 v<IJ( ) v<2J( ) 3 [vo>( ) ]2 + - II r II r + - II r 
r r2 

(B23) 

This is the same as Batchelor's (1951) Eq. (5.3), thereby validating our derivations. 
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Appendix C: The Inertial Range of Q(r), and of the 
Pressure Structure Function and Its Spectrum 

Whether we substitute (A2) or (A22) into (18), we have the formula 

Q(r) 
1 

6 1•1 

3 

L 
II =0 

4 

L W f 1"J(r) 
til t 

n-4 
r ' (Cl) 

where W,, are the coefficients in (A2) or (A22), which are also given in Table C 1, and !, ( r) 
is a representation of the three structure functions in (A2) or (A22); j,'"l( r) is the nth 
derivative of f,(r) with respect tor. There are many possible choices for the f,(r); three 
choices are given in the left column of Table C 1. We hypothesize that in the inertial range 
we have 

f,(r) = c,c.413 r q. (C2) 

The notation C, for the inertial-range coefficients in (C2) is for simplicity. The more 
descriptive notation C11 , C1y, and C).). for the inertial-range coefficients of D 1111 (r), D 11n(r), 
and D1.A1.A(r) is used elsewhere in this report. According to intermittency theory, 
q = 4/3- 21119, and C1, Cz, and C3 depend on the turbulence macrostructure and have 
dimensions of a macroscale raised to the power 21119. In the original similarity theory, 
q = 4/3 and C1, Cz, and C3 are universal constants. Any prediction for q could be used in 
(C2). We define 

Hz= c,/c, = fz(r)/J,(r) 

H3 = C3 /C, = f,(r)/J,(r). 

(C3) 

(C4) 

(C5) 

Whether C1, Cz, and C3 are macrostructure-dependent or not, we hypothesize that Hz and H3 

are universal constants. We expect that Hz and H 3 are more accurately measurable than 
Cz and C3 • By repeated differentiation of (C2), we have 

where 

IT(q,n) = (q-0) (q-1) (q-2) ..... (q-(n-1)) for n = 1,2,3, ... 

IT (q,O) = 1. 
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Using (C3) to (C7) in (Cl) for the inertial range, we may thus write 

(C8) 

where 
3 

CQ = C1 :E H, X,(q), 
t=l 

(C9) 

and wherein the numerical coefficients are 

1 4 

X,(q) = 6 .::o ~" l1 (q,n)' 
(C!O) 

which are given in Table Cl. Given measurements of C1, H2, and H 3, the coefficient CQ 
becomes known. 

Table Cl.--Coefficients W1, in (A2) and (A22) and coefficients Y1, in (Dll) to (DIS), 
for n = 0 to 4 and t = 1 to 3, for three choices of function setsf1 in (Cl) (separated here by 
single horizontal lines). Also, ll(q,n) and X1 (q), defined in (C7) and (C!O), for q = 4/3 and 
n = 0 to 4. 

n 0 1 2 3 4 

ft t ww Yto wt, ytl Wtz yf2 wt3 yt3 wt. yt4 X1 (4/3) 

D"" 
1 0 -1 0 0 12 0 8 0 1 4 0.576 

D"YY 
2 24 0 -24 0 -60 -12 -12 0 0 -24 -5.19 

DJ..w. 3 -8 0 8 0 8 4 0 0 0 4 1.04 

D"" 
1 0 -1 0 0 12 0 8 0 1 4 0.576 

D"YY 
2 0 24 0 0 -36 0 -12 0 0 -12 -2.07 

D"YY -
DAw./3 

3 24 0 -24 0 -24 -12 0 0 0 -12 -3.11 

AD 1 0 -1 0 0 12 0 8 0 1 4 0.576 

KD 2 4 -1 -4 0 2 -2 6 0 1 0 -0.288 

LD 3 0 -1 0 0 0 0 4 0 1 0 -0.115 

n(~,n) 1 
4 4 8 40 
3 9 27 81 
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where 

Substitution of (C8) into (3) gives our desired result, 

H = p-

2 3 
L H, X,(q) 

q(2-q)(q 2 -1) t•l 

(C11) 

(C12) 

(C13a) 

= [j (2+ q) + : HM- 4(2+ q)H11]/ [q(2-q)j (C13b) 

~ (1 -
2~) + 3 (1 - J::) H - 15 (1 -

7~) H . 3 5 6 )).. 30 ly 
(Cl3c) 

In (C13a), the H, can be ratios of any linear combination of the nonzero components of 
D,jk/ f), but in (Cl3b,c) we have chosen specific ratios defined by 

H~.~. = DMM(r)/ D 1111 (r), 

H 11 = D
1111

(r)/D 1111 (r), 

where r is in the inertial range. The approximation in (Cl3c) is that only the lowest order in 
~ is retained. 

The relationship between the structure function and the spatial speclrum from dala . 
along a line is (Tatarskii, 1971) 

J dr cos(k1 r) D~
2 l(r). 

0 

We have chosen the relationship given by Tatarskii (1971) that converges for 1 < q < 2. 
Our (C14) is twice Tatarskii's because we take the pressure variance, cr~. to be given by 

00 

cr~ = J 'I'P (k 1) dk1 • 

0 
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Substituting (Cll) in (Cl4) gives, for 1 < q < 2, 

For q = 4/3 and cp = HPCII' we have 

.Qf course, the pressure spectrum corresponding to (E4) follows from (C17) by replacing 
cp with C 2 ~ 4. 
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Appendix D: Reduction Using Integration by Parts 

We now derive Dp(r) from (3) and (A22). We use the representation of (A22) given 
in (Cl); substituting this in (3) gives 

where 

' 

1 3 
~ 

18 t•l 

4 

~ w,. F,.(r), 
11"'0 

F,.(r) = ~ J dy (y"- 3ry•-l + 3r 2y"-2)J,<">(y) 
r o 

-
+ r2 J dy yn-3 J,(n)(y). 

' 

(Dl) 

(D2) 

We change integration variables to z = y! r. Differentiation of!, is now with respect 
to z. We suppress the subscript t and the argument r, and jC•> is written where Jl">(z) 
appears. We delete writing dz after the integral symbol. Then, (D2) becomes 

I -

F. = j(z"- 3z"-l + 3z•-2) JC•> + J z•-3 Jl•>. (D3) 

0 I 

Repeated integration by parts gives 

Jz;f(n) = z;/(n-1)- i Jz;-IJ(n-1) 

- iz;-! Jln-2) + i(i-1) J z;-2/(n-2) = 
(D4) 

= + i(i -[) zH jCn-3) - i(i -J)(i- 2) J ZH jCn-3) 

= - i(i-1) (i-2)zH JC•- 4> + i(i-1) (i-2) (i-3) J zHJI'•- 4 >, 

where . . . means include all of the integrated terms that appear on all the lines above. These 
formulas can be applied to all of the integrals in (D3) that sum to give F,,. We do so, taking 
care that the remaining integrals are convergent and that the evaluated integrated terms are 
finite. We obtain 
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I ~ 

F
0 

= J (1- 3 z -I + 3 z -2
) f + J z -3 f 

0 I 

I ~ 

F1 = J ( -1 + 3z -2
) f + 2 J z -3 f 

0 I 

I ~ 

F2 = 2 f f + 2 f z -3 f 
0 I 

I 

F 3 = -6 f f 
0 

I 

F4 = -6j(!) + 24 f f. 
0 

Substituting these into (D 1 ), we obtain 

where 

Dp(r) = ~ 1~1 [Y,0 j(!) + Y, 1 jf + 

+ Y, 3 J z-2! + Y,4 jz-3JJ. 
0 I 

Y, 1 = (W,0 -W, 1+2W,2 -6W,3 +24W,4 )/6 

Y,2 = -W,0 /2 

These coefficients are given in Table Cl. 

(DS) 

(D6) 

(D7) 

(D8) 

(D9) 

(D!O) 

(Dll) 

(Dl2) 

(D13) 

(D14) 

(DIS) 

We can check (DlO) by verifying that it gives the same inertial-range formula as 
(Cll) and (Cl2). By substituting (C2) in (D!O) and performing the integrals, we obtain this 
verification if 
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[q (z- q)(q 2 -l)r i w, ncq.n) = Y,0 + Y, 1(q +lr 1 + Y,2 q-l + Y,3(q -lr 1 + Y,.(z -qr 1
. 

11"'0 

(DI6) 

Substituting (DII) to (DIS) and (C7) in (DI6), we have verified that each coefficient of W,, 
for n = 0 to 4 are the same on each side of (D 16). 

Changing the integration variable back to y and displaying the full dependence on all 
parameters and using the fact that Table C I shows that Y, 1 = Y,3 = 0, (D I 0) becomes 

(DI7) 
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Appendix E: Pressure Structure Function from the JG Assumption 

We present a (corrected) general formula for D;a(r) and its inertial-range formula 
including intermittency effects. We verify that our general formula (62) becomes Batchelor's 
(1951) formula when the JG approximation is used. Batchelor (1951) shows that the JG 
assumption simplifies (3) to give 

' 00 

JG f [ (\) ]2 Dp (r); y D 11 (y) dy + r2 Jy-I[DW(y)rdy. (EI) 

0 ' 

Here, we expressed Batchelor's (1951) Eq. (6.4) in terms of the velocity structure function 
rather than the velocity correlation, and we corrected a sign error. The incompressibility 
condition (A25) allows the integrands in (E I) to be written in many different ways. 

Consider the power-law inertial range such that 

(E2) 

where 0 < g < I. The original similarity hypothesis by Kolmogorov (1941) predicts g ; 2/3 
and that Cis a universal constant, empirically C ~ 2. The intermittency theory by 
Kolmogorov (1962) predicts g ; 2/3 + J.!l9 and that C may depend on turbulence 
macrostructure. Substituting (E2) in (EI), the inertial range of the pressure structure function 
is given by 

g 

2(1-g) 

For g ; 2/3 , this is 

as given previously by Obukhov (1949) and Batchelor (1951). For g ; 2/3 + J.l/9, it is 

I+ J: 
6 

I- J: 
3 
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We note that the ratio of (ES) to (60) is approximately HP times the flatness factor. The 
difference of the exponents (4/3) + (2!J19) in (ES) and (4/3)- (2!J19) in (59) is 4!1/9 « 0.1. 
Thus, compared with our theory, the theory based on the JG assumption by Obukhov (1949) 
and Batchelor (1951) produces a similar, but slightly different, inertial-range power law, and a 
perhaps greatly different coefficient. 

To show that our general formula (62) reduces to (El) under the JG assumption, we 
first rewrite the integrands in (E I) using the following formulas: 

Equations (E6) and (E7) are obtained using incompressibility (A25). As before, A. and y are 
2 or 3; we emphasize that the index y need not be the same as the index A.. We substitute 
(E6) and (E7) in the first and second integrals in (El), respectively; we obtain 

~ 

D;c(r); - [D 11 (r)j' + 4r 2 J y- 3 
{ [D 11 (yW + [D~.~.<YW- 2 D 11 (y) D

1
/Yl} dy 

' (E8) 
' 

+ 4 J y- 1 
{ [Du(Y)j'- D 11 (y) D

11
(y)} dy. 

0 

By substituting the JG relationships (B 15) and (B 16), (E8) becomes 

D;c(r);- ~ D[~ 1 (r) + ~ r 2 Jy-3 [D[~ 1 (y) + Di1u(y)- 6D[~11 (y)]dy 
, (E9) 

Comparison of (E9) and (62) shows that under the JG assumption our general formula (62) 
produces (E9), and therefore also (E8) and Batchelor's formula (El). This further verifies our 
derivations. 
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Appendix F: Viscons Range and Inner Scales of D,jkt( i) and DJ i) 

We present the viscous-range formulas for components of DUkl( i) and D,/?) in our 
chosen coordinate system, and use them to define inner scales parameterizing the transition 
between viscous and inertial ranges. Our purpose is to facilitate calculation of the mean­
squared pressure gradient. 

Recall our notation for derivatives u.
1

. = ()u.f()x .. We define the following derivative 
I J I J 

moments: 

d!I ;;; ((uiiit) (Fl) 

d "' ((uiii)2 (uyii)2) ly (F2) 

d).). "' ((u<II) 4
). 

(F3) 

As before, lc and y are 2 or 3, and can be equal or different. By Taylor series expansion of 
u,, we have the viscous-range formulas, 

D 11 yy{r) ~ d 1Yr
4 

Duu(r) ~ dn r 4 

For r in the viscous range, we define the universal constants 

Aly"' DIIyy(r)jDIIII(r) = diy/dii • 

An"' Duu(r)/DIIII(r) = du/dii" 

For r in the inertial range, we introduce the parameters e11 , e1y, and Cn such that 

DIIII(r) = C £ 413 r" II 
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By equating the viscous-range and inertial-range asymptotic formulas, we define inner 
scales (1 11 , 1

11
, lu), one for each of the three functions, 

4 C e 413 lq dill II ; 
II II 

4 C E413[q dly lly ; 
ly ly 

(F7) 

4 
dn l;.;. ; c 4f3[q nE n· 

From (F7), we have 

( 
4/J/ )1/(4-q) 

Ill ; ell e · dll • (F8) 

with analogous expressions for 1
11 

and ln. These inner scales are not equal, but we expect 
that their ratios are universal constants. The ratios of these inner scales are 

l jl - (A IH ) 111q-
4J ly J( - ly ly 

. where, for r in the inertial range, 

We define the universal constants 

A [~]'; H [~Jq-z; 
ly l ly l 

11 II 

2- q 2 

A...-=qH...-=q 
Jy ly 

A;.;.[!::::_]'; H;.;. [ 
1
nJq-z; 

Ill /11 

2- q 2 

A ...-=qH...-=q 
1.1. 1.1. . 

We compare these inner scales with those of the second-order velocity structure 
function. First, we write the inertial-range formula in a manner that includes the 
intermittency effect: 
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with g = 2/3 + 1119. The incompressibility condition (A25) gives 

this gives the 3/4 factor if g = 2/3. For the viscous range, we have 

D,, (r) = (hl,)2) r2 = d, r2 

Dn(r) = ((u, 11)
2)r 2 = d,r 2

, 

(Fll) 

which defines the derivative moments d
1 

and d, by implication. Incompressibility (A25) 
gives 

(Fl2) 

Inner scales /
1 

and l, are defined by equating viscous and inertial ranges at spacing equal to 
inner scale: 

Thus, 

( 
213/ )"(

2
- g) 

[
1 

= CE d
1 

z, = ( ~)1/(2- g) 

t, l2 + g 

For 11 = 0.25, this ratio of inner scales is 1.3534, whereas for 11 = 0 (i.e., for g = 2/3), 
the ratio is 1.3554. Isotropy gives 
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e = 15v d
1

, 

where v is kinematic viscosity. Therefore, 

II = (15 er'(2-•> 11(3g-2)1(6-3g), 

11 

where 11 = (v3/e) 114 = (v2/15 d/14 is the Kolmogorov microscale. 

If g = 2/3 and e is the universal Kolmogorov constant = 2, then 

II 
- = 13. 
11 

However, with 1.1 = 0.25, the intermittency result is 

I ( e J36147 ~ = 14 2 111147 

Thus, I /11 has weak dependence on both macrostructure and the microscale; from (Fll), 
1/11 has the same dependence. 

Comparing 1
1 

with 111 gives 

e II £ II 

[ 

2 d J- 318 

[ 413 d ]"'
32 

= ell d~ e 11 e
2 (15v) 4 d~ 

(F13) 

The second factor in (F13) is unique to intermittency theory; it has weak dependence on 
macrostructure and Reynolds number. The first factor also has this dependence arising from 
intermittency. We expect that all the inner scales are of similar value, so the first factor in 
(F13) is of the order of unity. 

The moments d 11 and d,_,_ have been measured at modest Reynolds numbers and 
found to be nearly equal by Antonia et al. (1982b), who also found that dJd

1 
= 1.6 , in 

contradiction to (Fl2). The streamwise velocity-derivative kurtosis, 
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has been observed to vary from 4 to 40 as Reynolds number varies from laboratory to 
atmospheric values (Wyngaard and Tennekes, 1970). Consequently, from (Fl3), 1

11
/1

1 
will 

vary considerably unless e 11 /e' has a similar variation. Note that 1
1 

and 1
11 

are not defined 
unless the Reynolds number is sufficiently large that an inertial range exists. The flatness 
factor, which is proportional to e

11 
le' has been shown by VanAtta and Chen (1970) to be 

about 3 times larger in atmospheric data than in laboratory (lower Reynolds number) 
turbulence (see their Fig. 7). 
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Appendix G: Mean-Squared Pressure Gradient 

As pointed out by Batchelor (1951), the mean-squared pressure gradient can be 
measured indirectly from measurements of turbulent diffusion. Using Batchelor's formula 
(54) for the mean-squared pressure gradient X and the representation (C1) for Q(r), we have 

1 4 -

X = ~ L L W,. J dy y""3 J/">(y). 
6 t=I 11=D O 

We use integration by parts in Appendix I for the integrals in (G 1); we obtain 

3 -

"' = L v fd" "-3 !,(;•) "" ... t4 J J l 
t=I O 

-
= 4 J dyy- 3 [D1111 (y) + D).).).}.(y)- 6D

1111
(y)j 

0 -
= 4 Jdyy- 3A

0
(y), 

0 

(G1) 

(G2) 

where Y,
4 

is defined in (D15) and given in Table Cl. The sum in square brackets in (G2) 
vanishes as y ~ oo, which can be obtained by use of (26d) and (28). 

We verify (G2) by substituting the JG relationships (B15) and (B16) to obtain 

-
x'G = 4 J dyy·3 { 3 [Du(Y)]2 + 3 [DAA(y)]2- 6 Dll(y) DAA(y)} 

0 -
= 4 Jdyy-3 3[DA<(y)-D11(YW· 

0 

Substituting the incompressibility condition (A25), we have 

-
X'G = 3 J dyy·l [D\1/(y)r, (G3) 

0 

which, using (21), is seen to be the same as Batchelor's (1951) Eq. (5.7), thereby verifying 
(G2). 
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We define the quantity 

H = X 

-J dyy-3 [DIIII(y) + D)).M(y)- 6DIIyy(Y)] 
0 

-J dy y -3 DIIII (y) 
0 

(G4a) 

If we know H as a function of the Reynolds number, then measurements of only u1 give the 
denominator ol Hx, and we can then determine X from (G2). For high Reynolds numbers, 
we define the universal constant 

hx = 1 + h).).- 6 h11 , 

where hn and h
11 

are universal constants given in Appendix F. We expect that Hx 
becomes a universal constant at high Reynolds numbers, in which case we expect 
Hz h. 

X X 

(G4b) 

The integral in (G2) depends on the viscous range and (for high Reynolds numbers) 
the inertial range. The shape of the structure-function components is poorly known near the 
transition between viscous and inertial ranges. The inner scale (Appendix F) parameterizing 
this transition is also poorly known. For large Reynolds numbers, we obtain an upper bound 
for X by integrating the viscous-range formula from y = 0 to the inner scale and integrating 
the inertial-range formula for y beyond the inner scale. For instance, for D 1111 (r), using the 
results of Appendix F, 

-J dy y-3 DIIII(y) 
0 

/II 00 

::; dll J dy Y + ell E4/3 J dy Yq-3 
0 1

11 

= .!.. dll ~~! (1 + _2_) 
2 2-q 

=- !IE II + __ 1 c 413 1.-z ( 1 2 ) 
2 2-q 

= 21 (1- ~} 
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For (G5c), the quantity in brackets in (G5b) is approximated by 4 -11. and 

(G6) 

We thus have from (G4a) 

x:::; sr(I- ~)Hx. (G7a) 

Obtaining the other two integrals in (G2) in the same manner as (G5a,b) and substituting all 
three integrals in (G2) gives 

x:::; sr(I- ~)hx. (G7b) 

Hence, (G7a,b) give Hx ~ hx for large Reynolds numbers. The details of the transition 
between inertial and viscous ranges give, for large Reynolds numbers, Hx = I + mn hn -
6 m

11
h

11
, where the numerical coefficients mn and m

11 
are of order unity. Of course, 

mn = m 
11 

= 1 gives (G4b ). 

Since X > 0, (G7a) gives the interesting bound 

Hx > 0. 

We expect that 1
11

/1 11 and ln/1 11 are of the order of unity, so (G8) is roughly 

(G8) 

(1- 6H
11 

+ Hn) ;;:: 0, as well as (I - 6A
11 

+A,);;:: 0, which say that in the inertial and 
viscous ranges, D

1111
(r) must be less than roughly one-sixth of [D

1111
(r) + DnnCr)]. Such 

a quantitative prediction cannot be obtained from kinematics; it must be the result of using 
the Navier-Stokes equation as our first step. 

Applying the same estimation method to (G3) as used in (G5a,b ), we have the mean­
squared pressure gradient in the JG approximation 

(G9) 

where 110 = di zi = C2 
E

413 1i'-2
• Take 11 = 0; then the ratio of (G7a) and (G9), considering 

that the same type of overestimate was used in both, gives 
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~ H [s [5!_]
1

"]

3

'

4 

x c2 d2 
I 

(GlO) 

The value of this ratio is unknown until Hx is determined from experiment. However, from 
the discussion in Appendix F regarding velocity-derivative kurtosis and the flatness factor, the 
last factor in (G 10) increases by a factor of about 4 as the Reynolds number varies from 
laboratory to atmospheric values. Consequently, x'G ~ X can at most occur for some 
particular value of Reynolds number. 

We now consider the case of low Reynolds numbers, for which experimental data for 
X has been obtained from dispersion experiments. Taylor's length scale /..r, which 
parameterizes the initial decrease of the velocity correlation, is defined by 

Batchelor (1951) similarly defines the pressure length scale 'A, by 

Batchelor's (1951) Eq. (7.4) shows that D
11 

(r)lcr
11 

is a function of only r!/..r for low 
Reynolds numbers. His Fig. I shows that D

1111
(r)I[D

11
(r)] 2 is the same function of 

r!l..r for various low Reynolds numbers. Consequently, using /..r to scale the integration 
variable in (G4a), the denominator of Hx is proportional to (cr

11 
//..r) 2

• The proportionality 
constant could be obtained by numerical integration using Batchelor's (1951) Fig. I and 
Eq. (7.4). Consequently, for low Reynolds numbers, we have 

Measured values of (1..,/!..r), as summarized by Monin and Yaglom (1975), scatter from 
0.4 to 1.0; Batchelor gives the value 0.81 on the basis of the JG assumption. Numerical 
simulation of the Navier-Stokes equation is a useful method of establishing the values of Hx 
for low to moderate Reynolds numbers. 
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Appendix H: Pressure Variance 

The case m = 3 in Appendix I gives the pressure variance from Batchelor's (1951) 
Eq. (2.16): 

2 
CJp = _I (p2) = -2. /3 = 

p2 2 

= - 112 [,~~ z,3f,(oo) + w30 I dy y -I .t; (y) l 
This applies to the second set of functions in Table C I; therefore, 

00 

(HI) 

cr; = ~ D 1111(oo)-D11n(oo)+ ~ Jdyy- 1 [Dt.ut.(y)-3D 11 yy(Y)j. (H2) 
0 

The integral in (H2) converges because of (28). Using (26c,d) and (28), we can write the 
first two terms in (H2) in a variety of ways, including - D

1111
(oo)/6. To check this result, 

we obtain from (H2), (B 15), and (B 16) the JG result 

00 

( 
2 )JG = 

CJp - ~ [ D 11(oo)j 2
- D 11 (oo)Dyy(oo) + 2 J dyy-l {[D).).(y)] 2

- D 11 (y)Dyy(Y)}. 
0 

Using the incompressibility condition (A25), we can write the integrand in (H3) as 

(H3) 

(H4) 

The second term on the right side of (H4) can be immediately integrated to give [D
11

(oo)] 2 /4; 
we then have 

( 
2 )JG = 

CJp - [ D 11(oo)j 2
- D 11 (oo) DyyCoo) + ~ J dyy [D\\\y) ]'. 

0 

(H5) 

The first terms in (H5) vanish because D
11

(oo) and Dn(oo) are equal; they are both twice the 
velocity variance. The integral in (H5) is the same as Batchelor's (1951) Eq. (2.16). This 
verifies our result. 
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Appendix 1: Definite Integrals of r"' Q (r) 

We calculate the integrals 

00 

I.,"' J dy y"' Q(y). (11) 

0 

According to Batchelor's (1951) Eqs. (2.12), (2.16), and (2.17), I 1 gives the mean-squared 
pressure gradient, I 3 gives the pressure variance, and I

2 
; I4 ; 0, which will serve as a check 

of our results. We substitute the representation (C1) into (11) and obtain 

1 3 4 

I ; _ L L W,, G,,m , 
m 6 f"'l n=O 

(12) 

where 
00 

G,,., o=; J dy ym•n-4 j,<")(y). (13) 

0 

We use the second set of functions in Table C1; this set includes D 11rt(r) - (1/3) D;u;u ( r); 
by (28), this function set produces convergence of all integrals in (12) for m :;:; 4. For this 
function set, the integrals G

10
m and G

20
., do not exist in the sum (12) because W10 ; 0 ; W

20
; 

these integrals would be divergent for m ;::: 3. We assume that !, ( r) approaches !, ( oo) faster 
than does r _,. Then the integrated terms vanish at the upper limit for m < 3. The integrated 
terms vanish at the lower limit for m > 0 because !, ( r) oc r 4 in the viscous range. Our 
remaining integrals converge at the lower limit for m > - 1 , and they converge at the upper 
limit for m :;:; 4. The integration by parts then produces the simple recurrence relation 

Gr(n•l)m; (3-m -n)Gtnm · (14) 

This result in (12) gives 

1 3 

I ; L Z G 
"' 6 tm tOm' 

1"'1 

for -1 <m< 3 (15) 

1 1 2 

I ; Z G + L. zrm Grim, m 6 3m 30m 6 t= I 

for 3 :;:; m :;:; 4 . (16) 

The distinction between (15) and (16) is that in (16) the integration by parts was terminated so 
as not to generate the divergent integrals G 10m and G20m from G 11 ., and G21 .,. The 
coefficients in (15) and (16) are 
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z,m = w,o + ( 3 - m) z,m . 

From (Dl2), (D14), and Table Cl, we see that 2,2 = 2Y,3 = 0 and 2,4 = 6Y, 1 = 0, and 
z,

4 
= W,

0
- 2,

4 
= 0. Consequently, (I5) gives /

2 
= 0 and (I6) gives /4 = 0; Batchelor (1951) 

derived that /
2 

= /
4 

= 0. 
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Appendix J: Compressibility Effects 

Expression (69) is intractable and would be extremely difficult to evaluate 
experimentally. This is because it contains quantities that cancel to produce a very much 
smaller M P ( r), as do the expressions by Obukhov and Y a glom (1951) relating D P ( r) to 
RUk

1
(f). Similar to the estimation of D;c(r), estimates of (69) can be obtained on the basis 

of the SI and JG assumptions using (50) to (53). Substituting (50) to (53) in (69) and 
rearranging terms gives 

M~G(r) = 4 O'n D 11 (r) I(r) + 4 (cr11 - crn) 

+ 2 Iy-1Du(Y) dyl 

wherein the fractional imbalance in incompressibility is defined by 

I(r) = l D, ''' - 2 {r• [ D_,(yl- D, (yl] dy) jn, (d 

·l J (n::'<Yl- z, _, [D_,(y)- n, (Ylj) dy) fn, ''' 

The numerator in curly brackets in (J2b) is the integral of the incompressibility condition 
(A25). Thus, I (r) = 0 for perfect incompressibility. For approximate incompressibility, 

(Jl) 

(J2a) 

(J2b) 

I ( r) is small compared with unity because the denominator in (J2a) is the first term of the 
numerator. From (50) to (53), we see that MUkl( f) is not locally isotropic (if anisotropy 
exists at large scales). Therefore, unlike DP(r), MP(r) is not locally isotropic. Hence, 
having assumed isotropy to obtain (3), we must assume isotropy (at all scales) for (69); in 
particular, we must assert that 0'

11 
= O'u: Therefore, (Jl) is 

(13) 

Requiring 

(14) 
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gives 

(JS) 

From (JS), we have for the inertial range 

(J6) 

where the flatness factor is given by 

(J7) 

and the outer scale L
0 

is defined as in (23) and (24), although 1.1 need not be zero. From 
(J6), we see that the constraint on incompressibility becomes more stringent as r!L0 
decreases. For r in the inertial range, smaller values of r!L 0 are accessible as the Reynolds 
number increases, so the stringency increases with the Reynolds number. For r ~ L

0
, the 

right side of (J6) is of the order of unity, so the constraint is lax in the production range. 

Viscous-range asymptotic formulas are the same for compressible and incompressible 
fluids because they are based on Taylor series expansions. Examples of such formulas are 
D11 (r) = d

1
r 2

, Du(r) = d,r 2
, and DP(r) = (l/3)X r 2

, where d 1 and d, are the derivative 
moments defined in Appendix F and X is the mean-squared pressure gradient. Let I (0) 
denote the limit of I ( r) as r ~ 0; we have 

(J8) 

In the limit r ~ 0, (JS) becomes 

(J9) 

Using (G7a) and (Fl3) and neglecting the second factor in (Fl3), we have 

( I 2) 1/4 ( 2)3/4 [I(0)[«30Hxd11 d 1 C11 /C jR, (JlO) 

where 
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is the Reynolds number and v is kinematic viscosity. As noted at the end of Appendix F, the 
numerator in (110) increases with R. However, the denominator increases faster such that the 
right side of (110) decreases by about a factor of 5 as R increases from 3 x 102 to 10 4

• 

Therefore, as the Reynolds number increases, the constraint on incompressibility becomes 
more stringent. If we use (Fl2) in (J8), perfect incompressibility requires that /(0) = 0. If 
the condition (110) is violated, then our formulas for X may be invalid. 
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Appendix K: The Acceleration Tensor 

Monin and Yaglom (1975), Batchelor (1951), and Obukhov and Yaglom (1951) 
showed that the correlation tensor of the acceleration vector consists of two terms; one is 
acceleration by the pressure gradient and the other is acceleration by viscous friction. 
Batchelor (1951) and Monin and Yaglom (1975) showed that the former is much larger than 
the latter for very large Reynolds numbers, but the latter is by far the greater for very· low 
Reynolds numbers. Entirely satisfactory expressions for the viscous acceleration term have 
been given by Monin and Yaglom (1975). These expressions involve many orders of 
differentiation of D,/ 1). Here, we give new results for the pressure gradient acceleration 
tensor defined by 

A,/i') = ~ (P 1 ,P 1~) p 

= - ~ (PP')IiJ = 
p 

1 
_ DP(r)1 ... 2 '1 

The general formula (A23) for a second-order isotropic tensor applies. In our chosen 
coordinate system, we therefore have the components 

This implies, of course, that A33 = A22 and A a~ = 0 if a* ~. Performing the covariant 
second-order derivative (K1) on DP(r) gives 

A ( ) - 1_ D<pl)(r). 
22 r = 

2r 

(K1) 

(K2) 

(K3b) 

The curl of the gradient is identically zero, so A,/ 1) must satisfy Eq. (12.70) by Monin and 
Yaglom (1975); namely 

A (r) A (r) + rA< 1)(r) 
II = 22 22 ' 

(K4) 

which is seen to be satisfied by (K3a,b). 
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We rewrite (62) using (G2): 

' 
- ~r 2 J y-3 [D1111 (r) + Dnn(r)- 6D11YY(r)] dy 

3 0 

' 
+ ~ J y -I [ D 1111 ( r) - 3D IIyy ( r)] dy . 

0 

Performing the first and second derivatives, we have 

A22(r) = ! -_I_ D~~~~(r)- _2._ [DIIII(r)- 3 DII (r)j 
3 6r 3r 2 YY 

' - ~ J y- 3 [D1111 (r) + D,u,(r)- 6D111/r)] dy 
0 

X I <2> 2 [ 3 ] o> AII(r) = 3- 6 DIIII(r)- 3-;: DIIII(r)- DIIy/r) 

2 
-- [D1111 (r) + 2D,,n(r)- 9D11 (r)] 

3r 2 YY 

' - ~ J Y -
3

[ DIIII(y) + Dnn<Y) - 6 DIIyy(Y)] dy · 
0 

(K5) 

(K6a) 

(K6b) 

To obtain the viscous-range formulas, we can either substitute Daa~~(r) = da~ r 4 in 
(K6a,b) or differentiate (55). In either method, we obtain 

The universal constant hQ is defined below (55). From (K7a,b) or (K6a,b), we see that 
A;;(O) = X· 
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(K7b) 



For the initial range, we substitute (02) for X into (K6a,b) and then use 
D (r) = C £413 r q to obtain aapp ap 

A22 ( r) 

A
11 

(r) 

The universal constant HP is given in (Cl3b). In Sec. 6, we show that HP is difficult to 
evaluate because its value is sensitive to isotropy. 

We can write (K7a,b) in the form 

X ( r

2 

J A (r) = _ 1- _ + ... , 
aa 3 o 2 

2~~,a 

which defines the length scale "-a. For large Reynolds numbers, we obtain 

(K8a) 

(K8b) 

(K9) 

(KlO) 

where n1 = 6 and n2 = 2, and we introduce the dimensionless coefficient N
11 

that the denominator of (04a) equals N
11 

C
11 

£ 413 1 f1-
2 

• 

chosen such 

We can write (K8a,b) in the form 

(Kll) 

where n~ = 3q/8N11 ~ 1/3 and n; = n~ (q·-1) ~ 119. As r increases in the inertial range, 
(Kll) shows that Aaa(r) decreases approximately as r- 213

• 

There is no assurance that only the first term in (K6a) is positive, but this seems likely 
on the basis of the discussion of (08). Therefore, it is likely that A

2
/ r) is monotonically 

decreasing, in which case (K4) requires that A 11 (r) cross zero at some r >A
1

, thereby 
becoming negative; then A 11 ( r) must cross zero again to become positive in the inertial range 
as required by (Kll). As shown by Obukhov and Yaglom (1951), the JG-based theory 
predicts this behavior. 
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